C.U.SHAH UNIVERSITY

Summer Examination-2017

Subject Name: Ring Theory

Subject Code: 4SC06RTC1 Branch: B. Sc.(Mathematics)

Semester: 6 Date: 17/04/2017 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) Define: Boolean ring
- **b**) Find zero divisors of the ring $(Z_6; +; \cdot)$.
- c) Find characteristic of the ring $(Z_5; +_5; \cdot_5)$.
- **d**) Give an example of sub ring which is not an ideal.
- e) Show that an integral domain contains no idempotent except 0 or 1.
- f) Define: Quotient ring
- g) Show that a ring R is commutative if $a^2 = a$ for each $a \in R$.
- h) Show that the ring $(P(U); \Delta; \cap)$ is not an integral domain if U contains more than one element.
- i) Define: Principal ideal ring
- **j**) Prove that the mapping $f:(Z; +; \cdot) \to (Z_n; +_n; \cdot_n)$ where $\phi(m) = [m], m \in Z$ is an onto homomorphism.
- **k)** If the homomorphism $\phi:(Z; +; \cdot) \rightarrow (Z_2; +_2; \cdot_2)$ is defined as

$$\phi(x) = \begin{cases} 0 & \text{; } x \text{ is even} \\ 1 & \text{; } x \text{ is odd} \end{cases}$$

then find kernel of ϕ .

- I) Find zeros of $f(x) = x^2 1$ in Z_{15} .
- **m**) Show that the polynomial $x^3 + x + 1$ is irreducible in $Z_5[x]$.
- n) Define: Monic polynomial

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(14)

a) For given subrings U_1 and U_2 of a ring R, show that their intersection $U_1 \cap U_2$ is also a subring of R.

	D)	Show that for elements a and b of a ring R , (i) $a0 = 0a = 0$ (ii) $a(-b) = (-a)b = -(ab)$ (iii) $(-a)(-b) = ab$	(5)
		If R is a ring with unity, then	
		(iv) $(-1)a = -a$ (v) $(-1)(-1) = 1$	
	c)	Prove that a nonzero element $[m]$ of ring $(Z_n; +_n; \cdot_n)$ is a zero divisor iff m and	(4)
		<i>n</i> are not relatively prime.	
Q-3	a)	Attempt all questions	(14) (5)
	a)	Let $I = 8Z$ in the ring $R = (2Z; +; \cdot)$. Prepare addition and multiplication tables for the quotient ring R/I .	(3)
	b)	If a commutative ring R with unity has no proper ideal, then prove that R is a	(5)
	,	field.	
	c)	Show that the characteristic of an integral domain is either a prime number or zero.	(4)
Q-4		Attempt all questions	(14)
	a)	Prove that a non empty subset U of a ring R is a subring of R iff the following	(5)
		conditions are satisfied. (i) $a-b \in U$ and (ii) $ab \in U$ for $a,b \in U$	
			(5)
	b)	Let $(M_2(Z); +; \cdot)$ be a ring. Check whether the $I = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} a, b \in Z \right\}$ is an	
		ideal of $M_2(Z)$ or not.	
	c)	Prove that a homomorphism defined on the ring $(Z; +; \cdot)$ is either a zero	(4)
		homomorphism or identity mapping.	
Q-5	a)	Attempt all questions	(14) (5)
	a)	If $(R; +; \cdot)$ is a ring wih unity then prove that the mapping	(3)
		$\phi: (Z; +; \cdot) \to (R; +; \cdot)$, where $\phi(n) = n1$, $n \in Z$, is a homomorphism with	
		(i) $K_{\phi} = \langle m \rangle$ if the characteristic of <i>R</i> is <i>m</i> , and	
	1.	(ii) $K_{\phi} = \{0\}$ if the characteristic of R is zero	(F)
	b)	Prove that the restricted cancellation law for multiplication holds good in a commutative ring iff it has no zero divisors.	(5)
	c)	Obtain the quotient $q(x)$ and remainder $r(x)$ on dividing	(4)
		$f(x) = 3x^3 + 2x^2 + x + 1$ by $g(x) = x^2 + 3x + 2$ in $Z_5[x]$ and express $f(x)$ in the	
		form $q(x)g(x)+r(x)$.	
Q-6		Attempt all questions	(14)
	a)	Prove that for ideals I_1 and I_2 of a ring R , $I_1 \cup I_2$ is also an ideal of R iff either	(5)
		$I_1 \subset I_2 \text{ or } I_2 \subset I_1 $.	
		Obtain all principal ideals in the ring $(Z_{12}; +_{12}; \cdot_{12})$.	(5)
	c)	If for $f(x) = (1, -2, 0, 3, 0, \dots)$ and $g(x) = (2, 0, -3, 0, 4, 0, \dots) \in Z[x]$ then	(4)
		find $f(x) + g(x)$ and $f(x) \cdot g(x)$.	
Q-7	<i>5)</i>	Attempt all questions Find the g.c.d. of $f(x) = 6x^3 + 5x^2 - 2x + 25$ and $g(x) = 2x^2 - 3x + 5 \in R[x]$ and	(14)
	a)	Find the g.c.d. of $f(x) = 6x^2 + 5x^2 - 2x + 25$ and $g(x) = 2x^2 - 3x + 5 \in R[x]$ and	(5)

express it in the form a(x)f(x)+b(x)g(x).

- **b**) Prove that for nonzero polynomials, $f, g \in D[x], [fg] = [f] + [g]$. (5)
- c) Prove that a finite integral domain is a field. (4)

Q-8 Attempt all questions

(14)

(7)

(7)

a) If we define addition and multiplication in power set P(U), U being the universal set, as follows:

For $A, B \in P(U)$

$$A + B = A\Delta B = (A \cup B) - (A \cap B)$$

$$A \cdot B = A \cap B$$

then show that $(P(U); +; \cdot)$ is a ring.

b) Prove that intersection of ideals is an ideal in a ring.

